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Abstract. In this paper relationships between Pareto points and saddle points are studied in
convex and nonconvex multiple objective programming. The analysis is based on partitioning

the index sets of objectives and constraints and splitting the original problem into subproblems
having a special structure. The results are based on scalarizations of multiple objective pro-
grams and related linear and augmented Lagrangian functions. In the nonconvex case, a

saddle point characterization of Pareto points is possible under assumptions that guarantee
existence of Pareto points and stability conditions of single objective problems. Essentially,
these conditions are not stronger than those in analogous results for single objective pro-
gramming.
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1. Introduction

Many researchers have contributed to the theory and methodology of mul-
tiple objective programming. In particular, a lot of attention has been
given to the development of various conditions for Pareto solutions.
Among a great deal of studies, one specific direction has been to relate Pa-
reto solutions to saddle points resulting from a duality framework associ-
ated with the multiple objective program (MOP) of interest. Due to their
distinctive features, saddle points have been of special interest in single
objective nonlinear programming. Over the years, obtained results have
been carried over and extended for MOPS. The available literature on vari-
ous types of duality in multiple objective programming is very rich and
there are numerous papers dealing specifically with saddle points in various
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settings (e.g., infinite dimensional spaces, generalized convexity, approxi-
mate solutions, theory of games, nondifferentiable problems, etc.). Many
duality results for vector-valued Lagrangian functions associated with gen-
eral MOPS defined with convex cones are contained in Sawaragi et al. [16].
Valyi [21] extended saddle-point conditions for convex problems to prob-
lems with approximate solutions. Those results were generalized by Breck-
ner et al. [3] for vector approximation problems. Similarly, approximate
saddle-point results were extended by Rong and Wu [15] for problems with
set-valued maps and by Dutta and Vetrivel [6] for problems with general-
ized approximate solutions. A vector-valued generalized Lagrangian was
constructed and analyzed by lacob [11], Singh et al. [17], and others. A set-
valued mapping was used by Huang and Yang [10] to construct and exam-
ine a generalized augmented Lagrangian.
A different direction was undertaken by those who studied scalar-valued

Lagrangians associated with scalarizations of MOPs. Van Rooyen et al.
[22] constructed a Lagrangian function for scalarized convex MOPs and
developed a saddle-point condition for Pareto solutions, which is both nec-
essary and sufficient. TenHuisen and Wiecek [18] proposed a framework
for developing generalized Lagrangian-type scalarizing functions for non-
convex programs. They used the augmented function to develop solution
approaches to finding Pareto points for bicriteria programs [19] and multi-
ple criteria programs [20]. The purpose of this article is to further examine
relationships between Pareto solutions and saddle points within the frame-
work of scalarized multiple objective programming in finite dimensions. As
we examine saddle points not only for convex but also for nonconvex
problems, we apply the augmented (quadratic) Larangian function origi-
nally proposed in single objective nonlinear programming.
In this paper we consider the general MOP:

minfUqðxÞ; q 2 Qg
subject to f jðxÞO 0; j 2 P;

ðMOPÞ

where

F : ¼ fx 2 Rn: f jðxÞO 0; j 2 Pg
is the feasible set, the functions UqðxÞ; q 2;Q; f jðxÞ; j 2 P, are all real-val-
ued, and Q :¼ f1; . . . ;Qg denotes the index set of the objective functions
and P :¼ f1; . . . ;mg denotes the index set of the constraints. The convex
hull of a set S will be denoted by conv S.
A feasible point x̂ 2 F is called a global Pareto solution (or a global ef-

ficient solution) for (MOP), if there is no other point x 2 F such that
UiðxÞOUiðx̂Þ for all i 2 Q and U jðxÞ < U jðx̂Þ for some j. A feasible
point x̂ 2 F is said to dominate a point x 2 F if Uiðx̂ÞOUiðxÞ for all
i 2 Q and U jðx̂Þ ¼ U jðxÞ for some j. If x̂ is a global Pareto point, the
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corresponding point Uðx̂Þ ¼ ðU1ðx̂Þ; . . . ;UQðx̂ÞÞ in the objective space is
called globally nondominated. For nonconvex problems, the concept of
local Pareto (nondominated) points is essential. A point x� 2 F is a local
Pareto point, if there exists a neighbourhood Nðx�Þ of x� such that x� is a
Pareto point in F \ Nðx�Þ. In this study we focus on global Pareto solu-
tions and refer to them as Pareto solutions.
We make extensive use of the scalarization of (MOP) introduced by

Charnes and Cooper [5] and formulated for x�, an arbitrary feasible point
of (MOP):

min
XQ

q¼1
UqðxÞ

subject to UqðxÞ � Uqðx�ÞO 0; q ¼ 1; . . . ;Q;

x 2 F:

ðCCðMOP;x�ÞÞ

As this scalarization depends on the point x�, we refer to this problem as
(CC(MOP, x�)). It is also well known that problem (CC(MOP, x�)) pro-
vides a method for finding Pareto points, as Charnes and Cooper observed
[5]: A point x� 2 F is a Pareto solution for (MOP) if and only if x� is an
optimal solution for problem (CC(MOP, x�)).
In Section 2, we partition the index set of the objective functions and the

index set of the constraints. The idea of partitioning these sets, that
appeared in Zlobec [24] and was later explored in [22] and [12], was the
inspiration for this paper. We propose two partitions, one for feasible
points only while in the other we allow infeasible points, i.e., we relax fea-
sibility. These partitions determine a framework within which we study
relationships between Pareto points and saddle points of convex and non-
convex MOPs. In Section 3, we derive a saddle point characterization of
Pareto points for convex programs. Although in this section we follow
upon the results in [22], we introduce different index sets to define the
Lagrangian functions which makes our results easier to handle. In Section
4, we analyze nonconvex programs and derive a saddle point characteriza-
tion of Pareto points by applying the augmented Lagrangian function.
Final conclusions are contained in Section 5.

2. Partitioning the Index Set of Objective Functions

Given a feasible point x� of (MOP) and the objective function values at
this point, one may be interested whether it is still possible to improve the
values of some criteria while the other criteria do not deteriorate. To
answer this question, it is convenient to introduce the set of points which
allow improvement of some objective functions with respect to a given
point x�. We can do this with respect to the feasible set F or the whole
space Rn and define
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SOðx�Þ :¼fx 2 S :UiðxÞOUiðx�Þ; i 2 Qg; ð1Þ
where S 2 fF;Rng. To indicate which definition of S is used, we shall
write SO

F ðx�Þ and SO
Rnðx�Þ. Using the concept of level sets containing the

point x�,

Li
Oðx�Þ :¼fx 2 F :UiðxÞOUiðx�Þg;

we have that SO
F ðx�Þ is equal to the intersection of all the level sets:

SO
F ðx�Þ ¼ \

Q

i¼1
Li

Oðx�Þ:

In [8] it was shown that a point x� 2 F is a Pareto point of (MOP) if
and only if

\
Q

i¼1
Li

Oðx�Þ ¼ \
Q

i¼1
Li
¼ðx�Þ; ð2Þ

where Li
¼ðx�Þ denotes the level curve of the objective Ui passing through

x�:Li
¼ðx�Þ:¼fx 2 F :UiðxÞ ¼ Uiðx�Þg. Clearly, if x� is not a Pareto point

these intersections must be different. As it is desirable to distinguish
between the objective functions that allow improvement and those that do
not, we partition the index set Q with respect to SOðx�Þ:

Q¼ðx�Þ :¼fi 2 Q:x 2 SOðx�Þ ) UiðxÞ ¼ Uiðx�Þg ð3Þ
and

Q<ðx�Þ :¼fi 2 Q:9x 2 SOðx�Þ such that UiðxÞ < Uiðx�Þg: ð4Þ
Obviously, we have Q ¼ Q¼ðx�Þ [ Q<ðx�Þ. If S ¼ F, only feasible points
are considered in the definition of SOðx�Þ;Q¼ðx�Þ, and Q<ðx�Þ. This parti-
tion is called the feasible point partition of the index set of the objective
functions. If, however, S ¼ Rn we include infeasible points in the definition
of SOðx�Þ, Q¼ðx�Þ, and QOðx�Þ, too. We call the resulting partition the
infeasible point partition of the index set of the objective functions.
Throughout the paper we use indices F and I to indicate to which partition
we refer, i.e., Q¼F ðx�Þ and Q<F ðx�Þ are defined with respect to SO

F ðx�Þ while
Q¼I ðx�Þ and Q<I ðx�Þ are defined with respect to SO

Rnðx�Þ. Statements where
no index is present pertain to both partitions.
Given a point x� 2 S which is not a Pareto point for (MOP), we shall

show that one does not have to consider all the objective functions to find
a Pareto point and can restrict the optimization to the objective functions
in Q<ðx�Þ. We therefore formulate a MOP with a smaller number of objec-
tive functions and refer to it as (MOPðQ<ðx�Þ)), as this problem depends
on the point x�:

min fUqðxÞ; q 2 Q<ðx�Þg
subject to x 2 S

UiðxÞOUiðx�Þ; i 2 Q:
ðMOPðQ<ðx�ÞÞÞ
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The feasible set of (MOP(Q<ðx�Þ)) is just SOðx�Þ. It turns out that the
Pareto points for subproblem (MOPðQ<ðx�ÞÞ) are closely related to the
Pareto points for the original problem (MOP).

THEOREM 1. Let x� be a feasible point of (MOP) which is not a Pareto
point. Then the following statements hold:
1. A point �x 2 SO

F ðx�Þ is a Pareto point for (MOP(Q<F ðx�Þ)) if and only if
�x is a Pareto point for (MOP).

2. If x̂ 2 SO
Rnðx�Þ is a Pareto point for (MOP(Q<I ðx�Þ)) and feasible for

(MOP) then it is also a Pareto point for (MOP).

Proof. We prove the first statement only. The second statement is analo-
gous to the only if part of the first.
ð)Þ Let �x be a Pareto point of (MOPðQ<F ðx�ÞÞ). Assume that �x is not a

Pareto point for (MOP). Then there is an x0 2 F such that

Uiðx0ÞOUið�xÞ 8i 2 Q;
Ukðx0Þ < Ukð�xÞ for some k 2 Q:

Because �x 2 SO
F ðx�Þ we have also that Uið�xÞOUiðx�Þ for all i 2 Q and

therefore x0 2 SO
F ðx�Þ. From Ukðx0Þ < Ukðx�Þ we get k 2 Q<F ðx�Þ. In par-

tic-ular, we conclude that there exists an x0 2 SO
F ðx�Þ such that

Uiðx0ÞOUið�xÞ 8i 2 Q<F ðx�Þ;
Ukðx0Þ < Ukð�xÞ for some k 2 Q<F ðx�Þ;

which contradicts the fact that �x is a Pareto solution for (MOPðQ<F ðx�ÞÞ).
ð(Þ Let �x 2 SO

F ðx�Þ be a Pareto point of (MOP). Assume that �x is not a
Pareto point for (MOPðQ<F ðx�ÞÞ). Then there is an x0 2 SO

F ðx�Þ such that

Uqðx0ÞOUqð�xÞ 8q 2 Q<F ðx�Þ;
Ukðx0Þ < Ukð�xÞ for some k 2 Q<F ðx�Þ:

Using the definition of Q¼F ðx�Þ we have that Uið�xÞ ¼ Uiðx0Þ, for all
i 2 Q¼F ðx�Þ so we conclude that there is an x0 2 SO

F ðx�Þ such that

Uqðx0ÞOUqð�xÞ 8q 2 Q;
Ukðx0Þ < Ukð�xÞ for some k 2 Q;

which contradicts the fact that �x is Pareto for (MOP). (
We note that a similar observation based on a different partition of the

index set of the objective functions for convex MOPs was made in [12].
Note also that from the definition of Q<

F ðx�Þ, if x� 2 F is a Pareto solution
for (MOP) then (MOPðQ<

F ðx�ÞÞ) is not defined.
Given a point x� 2 F which is not a Pareto point for (MOP) and a feasi-

ble point �x 2 F, a variation of (MOPðQ<ðx�ÞÞ) can be formulated:
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min fUqðxÞ; q 2 Q<ðx�Þg
subject to x 2 S

UiðxÞOUið�xÞ; i 2 Q¼ðx�Þ:
ðMOPðQ<ðx�Þ; �xÞÞ

It turns out that every Pareto point for this reduced problem is also Pareto
for (MOP). The converse also holds for the feasible point partition.

THEOREM 2. Let x� be a feasible point of (MOP) which is not a Pareto
point and let �x 2 F. Then
1. If �x dominates x� and is a Pareto point for (MOP(Q<ðx�Þ; �x)), then �x is

also a Pareto point for (MOP).
2. If S ¼ F and �x is a Pareto point for (MOP) then it is also a Pareto

point for (MOPðQ<
F ðx�Þ; �xÞ).

Proof. 1. Assume that a point �x dominating x� is Pareto optimal for prob-
lem (MOPðQ<ðx�Þ; �xÞ), but not for the original (MOP). Then there exists
an x0 2 F such that Uqðx0ÞOUqð�xÞ for all q 2 Q and Ukðx0Þ < Ukð�xÞ for
some k.
Now we consider two cases: k 2 Q<ðx�Þ and k 2 Q¼ðx�Þ. In the former,

we have x0 2 F such that

Uqðx0ÞOUqð�xÞ 8q 2 Q<ðx�Þ;
Ukðx0Þ < Ukð�xÞ for some k 2 Q<ðx�Þ;
Uqðx0ÞOUqð�xÞ 8q 2 Q¼ðx�Þ:

Therefore x0 is feasible for (MOPðQ<ðx�Þ; �xÞ) and the above inequalities
contradict Pareto optimality of �x for this problem.
In the latter, we have x0 2 F such that

Uqðx0ÞOUqð�xÞ 8q 2 Q¼ðx�Þ;
Ukðx0Þ < Ukð�xÞ for some k 2 Q¼ðx�Þ;
Uqðx0ÞOUqð�xÞ 8q 2 Q<ðx�Þ:

From the fact that �x dominates x� we also know that �x (and therefore x0)
belong to the set SOðx�Þ. This implies that Ukðx0Þ ¼ Ukðx�Þ, since
k 2 Q¼ðx�Þ. Combining this equality with the strict inequality above, we
get

Ukðx�Þ ¼ Ukðx0Þ < Ukðx0Þ;
which contradicts the fact that �x dominates x�.
2. Let �x 2 F be a Pareto point for (MOP). Assume that �x is not Pareto for
(MOPðQ<F ðx�Þ; �xÞ). Then there is an x0 2 F such that

Uiðx0ÞOUið�xÞ 8i 2 Q<F ðx�Þ;
Ukðx0Þ < Ukð�xÞ for some k 2 Q<F ðx�Þ:

16 MATTHIAS EHRGOTT AND MARGARET M. WIECEK



Since x0 is feasible for (MOPðQ<F ðx�Þ; �xÞ) then Uqðx0ÞOUqð�xÞ for all
q 2 Q¼F ðx�Þ. The three inequalities above imply that �x is not Pareto for
(MOP). (
In order to find a Pareto point for subproblem (MOP(Q<ðx�Þ)) we inves-

tigate the scalarization:

min
X

q2Q<ðx�Þ
UqðxÞ

subject to UqðxÞ � Uqðx̂ÞO0; q 2 Q<ðx�Þ;
x 2 SOðx�Þ;

ðCCðMOPðQ<ðx�ÞÞ; x̂ÞÞ

where x̂ 2 SOðx�Þ is an arbitrary feasible point of (MOPðQ<ðx�ÞÞ). Again,
by the Charnes and Cooper result, there is a close interrelation between
Pareto points of (MOPðQ<ðx�ÞÞ) and optimal solutions of its scalarization:
Let x� be a feasible point of (MOP) which is not a Pareto point and let
x̂ 2 SOðx�Þ. If x̂ is an optimal solution of (CC(MOPðQ<I ðx�ÞÞ; x̂Þ) and fea-
sible for (MOP), then it is also a Pareto solution for (MOP). As usual, for
the feasible point partition the result is stronger, and we have coincidence
of the two Pareto sets.
A similar result can be obtained using Theorem 2 in combination with

the Charnes and Cooper scalarization of (MOPðQ<F ðx�Þ; �xÞ): Let x� 2 F be
a feasible point of (MOP) which is not a Pareto point and let �x 2 SO

F ðx�Þ
be a point dominating x�. Then �x is an optimal solution of the Charnes
and Cooper scalarization of (MOPðQ<

F ðx�ÞÞ; �x) if and only if �x is a Pareto
point of (MOP).
An analogous partition, complementing the partition of objectives, can

be introduced for the index set of the constraints:

P¼ðx�Þ :¼ fj 2 P : x 2 SOðx�Þ ) f jðxÞ ¼ 0g
and

P<ðx�Þ :¼ fj 2 P : 9x 2 SOðx�Þ such that f jðxÞ < 0g;
thus P ¼ P¼ðx�Þ [ P<ðx�Þ. Here we simply distinguish between the active
and inactive constraints with respect to the set SOðx�Þ. The partition with
respect to SO

F ðx�Þ is called the feasible point partition of the index set of the
constraints and denoted by P¼F ðx�Þ and P<F ðx�Þ. The partition with respect
to SO

Rnðx�Þ is called the infeasible point partition of the index set of the con-
straints and denoted by P¼I ðx�Þ and P<I ðx�Þ. In particular, when S ¼ F and
SO
F ðx�Þ ¼ fx�g, i.e., when x� is Pareto for (MOP), the feasible point parti-

tion is the partition into active and inactive constraints at x�.
To conclude this section we remark that the sets Q<ðx�Þ and P<ðx�Þ are

directly based on the concept of level sets of all the objective functions
considered simultaneously (the former can be easily determined by just
comparing the functions’ values at x� with these functions’ constrained
minima). The index sets used in [22] are defined by means of level sets of
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ðQ� 1Þ-element subsets of the set of all objective functions and therefore
require more complicated calculations.

3. Convex Problems

In this section we investigate the special case of convex MOPs, i.e. we
assume that all the functions Ui; i 2 Q and fj, j 2 P are convex in (MOP).
In particular, the feasible set F is convex. Note that if (MOP) is a convex
problem then (MOPðQ<ðx�ÞÞ) is also convex: For the feasible point parti-
tion, SO

F ðx�Þ is the intersection of the (convex) level sets Li
Oðx�Þ, for the

infeasible point partition, it is the intersection of the convex sets
fx 2 Rn : Uiðx�ÞOUiðx�Þ; i 2 Qg.
In this section we use both the feasible and infeasible point partitions and

prove saddle point results for Pareto points of the convex (MOP). Some of
these results have first been obtained by the first author in his Ph.D. thesis
[7]. We follow upon the study of convex MOPs performed in [24], [22], and
[12], and obtain similar results using different partitions of the index sets.
Using the partition (3), (4) of the index set of the objective functions

defined in Section 2, we observe a condition for a point x� 2 F not to be
Pareto. An analogous observation has been made in [22].
A point x� 2 F is not a Pareto point for (MOP) if both Q<ðx�Þ 6¼ ; and

there exists a point �x 2 F such that

Uið�xÞ < Uiðx�Þ 8i 2 Q<ðx�Þ;
Uið�xÞ ¼ Uiðx�Þ 8i 2 Q¼ðx�Þ:

More significantly, for the feasible point partition equivalence holds.
If we think of (MOPðQ<F ðx�ÞÞ) in the context of convex problems, we can

strengthen Theorem 1. If x� is not a Pareto point for (MOP), then by the
above observation, there exists a Pareto point �x for (MOPðQ<F ðx�ÞÞ) such that
Uið�xÞ ¼ Uiðx�Þ for all i 2 Q¼F ðx�Þ and Uið�xÞ < Uiðx�Þ for all i 2 Q<F ðx�Þ, and
furthermore, due to Theorem 1, �x is a Pareto point for (MOP).
When we use the feasible point partition, the geometrical characteriza-

tion of Pareto solutions given by (2) implies that a point x� 2 F is Pareto if
and only if Q<F ðx�Þ is empty. This conclusion is valid for general (noncon-
vex) problems. For a non-Pareto point x� the above observation allows a
distinction between convex and nonconvex problems. The existence of the
point �x which satisfies all the conditions of the observation simultaneously
cannot be shown in the general (nonconvex) case, i.e. in the general context
of [8]. The implication for the convex (MOP) is that x� not being a Pareto
point implies the existence of a feasible point �x for which Uið�xÞ < Uiðx�Þ
for all i 2 Q<ðx�Þ simultaneously.
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Including the partition of the index set of the constraints, P<ðx�Þ and
P¼ðx�Þ, we extend the above observation and obtain a more specific result
concerning the constraints, analogous to a result in [22].
A point x� 2 F is not a Pareto point for (MOP) if both Q<ðx�Þ 6¼ ; and

there exists a point �x 2 F such that

Uið�xÞ < Uiðx�Þ 8i 2 Q<ðx�Þ; ð5Þ

Uið�xÞ ¼ Uiðx�Þ 8i 2 Q¼ðx�Þ; ð6Þ

f jð�xÞ < 0 8j 2 P<ðx�Þ; ð7Þ

f jð�xÞ ¼ 0 8j 2 P¼ðx�Þ: ð8Þ
Again, for the feasible point partition, equivalence holds.
For a feasible point x� 2 F define now the set

�SOðx�Þ : ¼fx 2 Rn :UiðxÞOUiðx�Þ 8i 2 Q¼ðx�Þg\
fx 2 Rn : f jðxÞO0 8j 2 P¼ðx�Þg;

ð9Þ

i.e., �SOðx�Þ is the set of points which satisfy the constraints in P¼ðx�Þ and
allow a decrease for objectives in Q¼ðx�Þ. We shall again use subscripts F
and I to indicate to which partition we refer, if necessary. Note that these
points are not necessarily contained in F. Therefore, S

Oðx�Þ is not neces-
sarily contained in SO

F ðx�Þ or vice versa. Since only Q¼ and P¼ are used in
definition (9) the same applies to the comparison of S

O
Rnðx�Þ and SO

Rnðx�Þ.
Given a feasible point x� 2 F, define a Lagrangian function

Lðx; k;lÞ :¼
X

i2Q<ðx�Þ
kiU

iðxÞ þ
X

j2P<ðx�Þ
ljf

jðxÞ ð10Þ

associated with the problem
min fUqðxÞ; q 2 Q<ðx�Þg
subject to f jðxÞO0; j 2 P<ðx�Þ

x 2 �SOðx�Þ;
ð11Þ

which, using definition (9), is equivalent to
min fUqðxÞ; q 2 Q<ðx�Þg
subject to UqðxÞ O Uqðx�Þ; q 2 Q¼ðx�Þ

x 2 F:

ð12Þ

Observe that the structure of (MOPðQ<ðx�Þ; �xÞ) is similar to that of (12),
however the important difference is that in the former the point x� is
assumed not to be Pareto while in the latter it is meant to be Pareto. Note
also that the constraint x 2 F is present no matter if S ¼ F or S ¼ Rn is
chosen in the partitions of index sets P and Q. Finally, note that whenever
Q<I ðx�Þ ¼ Q<F ðx�Þ the results for the infeasible and feasible point partitions
coincide.
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We now present a result showing that the existence of a saddle point of
the Lagrangian function Lðx; k; lÞ is a necessary (and, in the case of the
feasible partition, sufficient) condition for a point x� to be Pareto. The
observations regarding nonPareto points provide the foundation for the
proof of Theorem 3 which follows upon the proof of the main result in
[22] and is therefore not repeated here.

THEOREM 3. If a point x� 2 F is a Pareto solution for (MOP) then there
exist multipliers k�P 0; k� 6¼ 0 and l�P 0 such that

Lðx�; k�; lÞOLðx�; k�;l�ÞOLðx; k�;l�Þ ð13Þ
holds for all l P 0 and for all x 2 �SO

F ðx�Þ. For the feasible point partition
the converse holds, too.

COROLLARY 1. If ðx�; k�; l�Þ is a saddle point of (10) then Lðx�; k�;l�Þ ¼P
i2Q<ðx�Þ k

�
i U

iðx�Þ.

Proof. From (13) we have
sup
lP0

Lðx�; k�;lÞOLðx�; k�; l�ÞO inf
ðx2 �SO

F
ðx�Þ

Lðx; k�; l�Þ:

We now use (10) to calculate Lðx�; k�; 0Þ as
P
ði2Q<ðx�Þk

�
i U

iðx�Þ. Observing
that l�j P0, for all j 2 P<ðx�Þ and fjðx�ÞO 0 for all j 2 P<ðx�Þ we conclude

Lðx�; k�; 0Þ ¼
X

i2Q<ðx�Þ
k�i U

iðx�ÞO sup
lP0

Lðx�; k�; lÞ

OLðx�; k�;l�Þ
¼

X

i2Q<ðx�Þ
k�i U

iðx�Þ þ
X

j2P<ðx�Þ
l�j f

jðx�Þ

O
X

i2Q<ðx�Þ
k�i U

iðx�Þ;

which implies the claim. (

For the feasible point partition, we remark that Theorem 3 is of theoreti-
cal interest since no constraint qualification, for example such as the Slater
condition, is imposed. Nevertheless, Theorem 3 and Corollary 1 seem not
to provide useful information if x� is a Pareto solution. Then Q<

F ðx�Þ is
empty and there is no guarantee that P<F ðx�Þ is nonempty. However, Theo-
rem 3 becomes of practical value and leads to new results if Q<ðx�Þ is
replaced by any nonempty subset Qðx�Þ of Q so that Q¼ðx�Þ in Definition
(9) of S

Oðx�Þ is replaced by QnQðx�Þ.

COROLLARY 2. Let a point x� 2 F be a Pareto point for (MOP) and
assume that Qðx�Þ � Q is a nonempty set. Then there exist 0 6¼ k�P 0,
l�P 0 such that the saddle point condition (13) and Corollary 1 hold for
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Lðx; k;lÞ ¼
X

i2Qðx�Þ
kiU

iðxÞ þ
X

j2P<ðx�Þ
lj f

jðxÞ ð14Þ

for all l P 0 and x 2 ~SOðx�Þ defined as
~SOðx�Þ : ¼ fx 2 Rn :UiðxÞOUiðx�Þ 8i 2 QnQðx�Þg\

fx 2 Rn : f jðxÞO0 8 j 2 P¼ðx�Þg: ð15Þ
Proof. Follow the proof of necessity in the proof of Theorem 2.4 from [22]
and use Corollary 1, replacing Q<ðx�Þ by Qðx�Þ. (

COROLLARY 3. Under the assumptions of Corollary 2 there exists an
i 2 Qðx�Þ such that Uiðx�ÞOUiðxÞ for all x 2 eSOðx�Þ \ F.

Proof. Based on Corollary 2 and using l�j f
jðx�Þ ¼ 0 for all j 2 P<ðx�Þ, as

follows from the proof of Corollary 1, the second saddle point inequality
(13) for Lagrangian (14) yieldsX

i2Qðx�Þ
k�i 2 Uiðx�Þ � Uiðx�ÞÞ �

X

j2P<ðx�Þ
l�j f

jðxÞO0 8x 2 ~SOðx�Þ: ð16Þ

Since, by assumption, x 2 ~SOðx�Þ \ F then f jðxÞO0, which yieldsX

j2P<ðx�Þ
l�j f

jðxÞO0

in (16). In order that (16) holds it must be that

9i 2 Qðx�Þ:Uiðx�ÞOUiðxÞ for all x 2 ~SOðx�Þ \ F: (

The results above can have the following interpretation. Given a solution
x̂ 2 F, we may not know whether it is a Pareto point. Assuming that it is
not, one may want to improve some objective functions that are of special
importance without deteriorating the others. In this context, Corollaries 2
and 3 become meaningful. Let Qðx̂Þ be the set of indices of the objective
functions we would like to improve. If the Lagrangian function Lðx; k; lÞ
does not have a saddle point, i.e. if (13) does not hold for some l P 0 and
some x 2 eSOðx̂Þ, then x̂ is not Pareto and one can in fact improve the cho-
sen objective functions. On the other hand, if x̂ is a Pareto point, then
based on Corollary 3, there exists at least one objective function such that
its value at x̂ is the smallest for all x 2 ~SOðx̂Þ \ F, which indicates that at
least one of the objective functions chosen cannot be improved and there-
fore should leave Qðx̂Þ.
Corollary 2 reveals additional information about a Pareto solution

examined in the context of a decision situation in which the objective func-
tions of interest are chosen to be in Qðx�Þ. As a Pareto solution x� contrib-
utes to the saddle point ðx�; k�;l�Þ of function (14), this function measures
the cost (to be minimized) of the Pareto point with respect to the criteria
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of interest and the constraint functions in P<ðx�Þ as well as the utility (to
be maximized) of that Pareto point with respect to the slack of these con-
straints. According to Corollary 1, the maximum utility is always constant
(equal to

P
i2Qðx�Þ k

�
i U

iðx�Þ) and independent of the constraints. Therefore,
at a Pareto point the overall slack is always maximized and equal to zero.
Viewing the constraints of (MOP) as, for example, resources to be utilized,
we may conclude that utility of a Pareto point is independent of the usage
of the resources.

THEOREM 4. Let a point x� 2 F be a Pareto point for (MOP) and assume
that Qðx�Þ � Q is a nonempty set. Then x� is a Pareto point of the following
multiple objective program:

min fUiðxÞ; i 2 Qðx�Þg
subject to f jðxÞO0; j 2 P<ðx�Þ

x 2 ~SOðx�Þ
ððMOPðQðx�ÞÞÞ

where ~SOðx�Þ is defined in (15).

Proof. Since x� 2 F and Corollary 2 holds, there exist 0 6¼ k�P0, l�P0
such that the saddle point condition (13) is satisfied for function (14) for
all l P 0 and x 2 ~SOðx�Þ. Using the saddle point optimality conditions of
convex single objective programming [2], we get that x� is an optimal solu-
tion of the single objective program

min
X

i2Qðx�Þ
k�i U

iðxÞ

subject to f jðxÞO0; j 2 P<ðx�Þ
x 2 eSOðx�Þ:

Applying Geoffrion’s result on the weighting scalarization of MOPs [9],
we obtain that x� is a weak Pareto point of the problem ðMOPðQðx�ÞÞÞ. (A
point x� is called a weak Pareto point if there is no other point x such that
UiðxÞ < Uiðx�Þ for all i.)
Suppose now that x� is a weak Pareto solution but not a Pareto solution

for ðMOPðQðx�ÞÞÞ. Then there must exist a point x0 feasible for
ðMOPðQðx�ÞÞÞ and some k 2 Qðx�Þ such that Ukðx0Þ < Ukðx�Þ and also
some i 2 Qðx�Þ such that Uiðx0Þ ¼ Uiðx�Þ. Define eQðx�Þ :¼ Qðx�Þ n fi 2
Qðx�Þ : Uiðx0Þ ¼ Uiðx�Þg. Then, as we proved above, we conclude that x� is
a weak Pareto point for ðMOPðeQðx�ÞÞÞ. Repeating this process, we must
finally obtain a set eQðx�Þ 6¼ ; and a corresponding point ~x0 such that
Ukð~x0Þ < Ukðx�Þ for all k 2 eQðx�Þ. But this contradicts weak Pareto opti-
mality of x� for ðMOPðeQðx�ÞÞÞ, and therefore x� must also be a Pareto
point of ðMOPðeQðx�ÞÞÞ. (
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In the context of Theorem 4 we remark that when all k�i implied by Cor-
ollary 2 are positive, x� is a proper Pareto point of ðMOPðQðx�ÞÞÞ (in the
sense of Geoffrion).
Interestingly, Theorem 4 complements Theorem 1 as they both examine

relationships between (MOP) and the reduced MOPs related to the original
one. These theorems result in a following corollary:

COROLLARY 4. Let x0 be a feasible point of (MOP) which is not a Pareto
point. If �x 2 SOðx0Þ \ F is a Pareto point for ðMOPðQ<ðx0ÞÞÞ, then it is also
a Pareto point for ðMOPðQðxÞÞÞ, where Qð�xÞ � Q is a nonempty set.
Using (15), ðMOPðQðx�ÞÞÞ can be written as

min fUiðxÞ; i 2 Qðx�Þg
subject to UqðxÞOUqðx�Þ; q 2 Q n Qðx�Þ

x 2 F:

Since Qðx�Þ is any nonempty subset of Q, it can be also defined as
Qðx�Þ ¼ Q<ðx0Þ where x0 2 F is not a Pareto point for (MOP). Therefore,
the problem (MOPðQðx�ÞÞ) then becomes

min fUiðxÞ; i 2 Q<ðx0Þg
subject to UqðxÞOUqðx�Þ; q 2 Q¼ðx0Þ;

x 2 F;

which exactly has the structure of the problem (MOPðQ<ðx0Þ; x�Þ), see Sec-
tion 2. Clearly, Theorem 2 applies to this special case of the problem
(MOPðQðx�ÞÞ) with Qðx�Þ ¼ Q<ðx0Þ which in this particular case strength-
ens the result of Theorem 4.

EXAMPLE 1. For the feasible point partition, we illustrate our results with
an example extending [12, Example 3.3] by adding another objective func-
tion. Consider the following (MOP):

min f�x1 þ x2;x
2
1 þ x22;x2g

subject to f 1ðxÞ ¼ x21 þ x22 � 2 O0;
f 2ðxÞ ¼ �x1 þ x22 � 1 O0;
f 3ðxÞ ¼ x1 � x2 � 1 O0;
f 4ðxÞ ¼ �x1 O0:

ð17Þ

First, choose x� ¼ ð0; 0Þ. Then we obtain U1ðx�Þ ¼ U2ðx�Þ ¼ U3ðx�Þ ¼ 0.
We also get SO

F ðx�Þ ¼ fx�g so that Q<F ðx�Þ ¼ ; and therefore x� is a Pareto
point for the original (MOP) (17). Choose now Qðx�Þ ¼ f1; 2g. We then
have P<F ðx�Þ ¼ f1; 2; 3g and ~SOðx�Þ ¼ fx 2 R2 : x1P0, x2O0g. Theorem 4
implies that x� is a Pareto point for the reduced (MOP) below
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min f�x1 þ x2;x
2
1 þ x22g

subject to f 1ðxÞ ¼ x21 þ x22 � 2 O0;
f 2ðxÞ ¼ �x1 þ x22 � 1 O0;
f 3ðxÞ ¼ x1 � x2 � 1 O0
x 2 ~SO

F ðx�Þ;

ð18Þ

whose feasible set can be simplified to convfð0; 0Þ; ð1; 0Þ; ð0;�1Þg. Checking
the saddle point condition of Corollary 2 we have to find k�P0, k� 6¼ 0
and l�P0 such that

�2l1�l2�l3O� 2l�1�l�2�l�3
Ok�1ð�x1þx2Þþ k�2ðx21þx22Þþ
þl�1ðx21þx22� 2Þþl�2ð�x1þx22� 1Þþl�3ðx1�x2� 1Þ

ð19Þ
holds for all lP0 and all x 2 ~SO

F ðx�Þ. From the first inequality in (19) we
get l� ¼ 0, as none of the constraints in P<F ðx�Þ is active at x�. The second
inequality is then satisfied choosing, for example, k�1 ¼ 0, k�2 ¼ 1. We
remark that it is not possible to find k�1 > 0, k�2 > 0 in (19), and we cannot
conclude that x� is a proper Pareto point for the reduced (MOP). The
maximum utility of x� is quantified as

P
i¼1;2 k�i U

iðx�Þ.
Consider now the point x� ¼ ð0:5þ 0:5

ffiffiffi
3
p

;�0:5þ 0:5
ffiffiffi
3
p
Þ. Then we

obtain U1ðx�Þ ¼ �1, U2ðx�Þ ¼ 2, and U3ðx�Þ ¼ �0:5þ 0:5
ffiffiffi
3
p

. We also get
SO
F ðx�Þ ¼ convfð0;�1Þ; x�g so that Q<F ðx�Þ ¼ f2; 3g and therefore x� is not

a Pareto point of the original (MOP). Choose Qðx�Þ ¼ f1g. Then
P<F ðx�Þ ¼ f1; 2; 4g and ~SO

F ðx�Þ ¼ fx 2 R2 : x21 þ x22O2, x2O� 0:5þ
0:5

ffiffiffi
3
p

;x1 � x2O1g. Consider the following reduced problem

min U1ðxÞ ¼ �x1 þ x2

subject to f 1ðxÞ ¼ x21 þ x22 � 2 O0;
f 2ðxÞ ¼ �x1 þ x22 � 1 O0;
f 4ðxÞ ¼ �x1 O0;
x 2 ~SO

F ðx�Þ;

ð20Þ

which is equivalent to

min fU1ðxÞ : x 2 convfð0;�0:5þ 0:5
ffiffiffi
3
p
Þ; x�; ð0;�1Þgg: ð21Þ

Since x� is not Pareto for the original (MOP) but it is an optimal solution
of problem (21), we note that Theorem 4 cannot be strengthened to a nec-
essary and sufficient condition. However, since x� is not Pareto, we can
also apply Theorem 1 and construct the reduced (MOP) below

min fx21 þ x22; x2g
subject to x 2 SO

F ðx�Þ ¼ convfð0;�1Þ; x�g:
ð22Þ

All Pareto points of (22) are contained in the line segment
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convfð0;�1Þ; ð0:5;�0:5Þg
and according to Theorem 1 they all are Pareto points for the original
problem (17).

EXAMPLE 2. We examine the original (MOP) of Example 1 considering
the infeasible point partition of index sets. First, for x� ¼ ð0; 0Þ, we observe
that the same results can be obtained due to the fact that
SO
F ðx�Þ ¼ SO

I ðx�Þ ¼ fx�g.
However, for the point x� ¼ ð0:5þ 0:5

ffiffiffi
3
p

;�0:5þ 0:5
ffiffiffi
3
p
Þ these two sets

differ. We have

SO
F ðx�Þ ¼ fx 2 R2 : � x1 þ x2O� 1;x21 þ x22O2;x2 � 0:5þ 0:5

ffiffiffi
3
p
g:

The set SO
F ðx�Þ in Example 1 is only part of the boundary of SO

I ðx�Þ. We
also have Q<I ðx�Þ ¼ Q, and P<I ðx�Þ ¼ f1; 2; 4g. Therefore from Theorem 1
we obtain that all Pareto points of the multiple objective program

min f�x1 þ x2; x
2
1 þ x22; x2g

subject to x 2 SO
I ðx�Þ

ð23Þ

which are feasible for (MOP) are also Pareto points of (MOP).

4. Nonconvex Problems

In this section we drop the convexity assumptions of the previous section,
consider the general (nonconvex) (MOP) and discuss again the relation-
ships between Pareto points and saddle points using a particular aug-
mented Lagrangian. Before we state main results, we first make certain
assumptions about single objective programs related to MOPs of interest
and examine the conditions under which those assumptions hold. As the
linear Lagrangian (10) cannot be used for nonconvex problems, we associ-
ate with (CC(MOP, x�)) the augmented Lagrangian (suggested in [14] and
investigated in [4] and [13]) defined for x 2 F, y 2 RQ and r > 0:

Laðx; y; rÞ ¼
X

q2Q
UqðxÞ þ

X

q2Q
yqmax UqðxÞ � Uqðx�Þ;�yq

2r

n oh

þr max UqðxÞ � Uqðx�Þ;�yq
2r

n o� �2�
;

ð24Þ

where x� 2 F.
Following Rockafellar, see [13], we make the following assumptions

about (CC(MOP,x�)).

ASSUMPTION 1. Let (CC(MOP, x�)) satisfy the quadratic growth condi-
tion (QGC), i.e., there exists an rP0 such that Laðx; 0; rÞ is bounded below
as a function of x, x 2 F.
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The QGC is certainly satisfied if, for some rP0, all the functions Uq are
bounded below on F and thus in particular, if F is compact and all the
functions are lower semicontinuous on F. Such an assumption is in order,
since it guarantees the existence of Pareto solutions, see e.g., [16]. For more
details about the quadratic growth condition we refer to Rockafellar, [13].

ASSUMPTION 2. Let (CC(MOP,x�)) be (lower) stable of degree 2 (SoD2),
i.e. there exist
1. an open neighbourhood N of the origin in RQ, and
2. a function p : N! R1 of class C2 (i.e. twice continuously differentia-

ble) such that

pðuÞPpðuÞ for all u 2 N

and
pð0Þ ¼ pð0Þ;

where pðuÞ : RQ ! R1 is the perturbation function associated with
(CC(MOP, x�)) and defined as

pðuÞ ¼ min
x2F

X

q2Q
UqðxÞ : UqðxÞ � Uqðx�ÞOuq; q 2 Q; u 2 RQ

( )
:

We emphasize that Assumption 1 is rather technical and not constrain-
ing while Assumption 2 is stronger and related to the curvature of the ori-
ginal objective functions, which should allow that the perturbation
function pðuÞ of (CC(MOP,x�)) be supported by a C2 function p. The fol-
lowing lemmas examine when Assumption 2 holds.

LEMMA 1. Let x� 2 F. If the single objective problems ðPqÞ; q 2 Q
min UqðxÞ
subject to UiðxÞOUiðx�Þ; i ¼ 1; . . . ;Q

x 2 F

ðPqÞ

are SoD2 then there exist a neighbourhood N of the origin and a function p
of class C2 such that the perturbation function pðuÞ of (CC(MOP,x�)) is
bounded below by p.

Proof. Let N1; . . . ;Nq � RQ and p1; . . . ;pQ be the neighborhoods and func-
tions that exist according to the SoD2 condition for problems
ðPqÞ; q ¼ 1; . . . ;Q. Define the open neighborhood N of the origin in RQ,

N:¼ \Qq¼1 Nq

and the function p :N! R1 of class C2 as

pðuÞ:¼
X

q2Q
pqðuÞ:
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Then for each u 2 N we have

pðuÞ ¼ min
x2F

X

q2Q
UqðxÞ :UiðxÞOUiðx�Þ þ ui; i ¼ 1; . . . ;Q

( )

P
X

q2Q
ðmin
x2F
fUqðxÞ :UiðxÞOUiðx�Þ þ ui; i ¼ 1; . . . ;QgÞ

¼
X

q2Q
pqðuÞP

X

q2Q
pqðuÞ ¼ pðuÞ:

ð25Þ

The first equality in (25) is the definition of pðuÞ, the first inequality is
obvious, the second equality is the definition of pqðuÞ, the second inequality
is the SoD2 assumption for ðPqÞ, and the final equality is the definition
of p.

(
Due to Lemma 1, a sufficient condition for (CC(MOP,x�)) to be SoD2 is

that the single objective problems ðPqÞ are SoD2 and additionally satisfy

pð0Þ ¼
X

q2Q
pqð0Þ ¼

X

q2Q
pqð0Þ; ð26Þ

where p, pq and pq are defined as in the lemma. More important for further
analysis is the following lemma which reveals that this condition is satisfied
if x� in Lemma 1 is a Pareto point of (MOP).

LEMMA 2. If, under the assumptions of Lemma 1, x� is a Pareto point of
(MOP), then (CC(MOP, x�)) is SoD2.

Proof. From Lemma 1 and its proof we know that the perturbation func-
tion pðuÞ of (CC(MOP, x�)) is bounded below by the C2 function
pðuÞ ¼

P
q2Q pqðuÞ. Now consider the constraints UiðxÞOUiðx�Þ,

i ¼ 1; . . . ;Q, of a single objective problem ðPqÞ. If x 2 F is feasible for ðPqÞ
then x 2 \Qi¼1Li

Oðx�Þ. Since x� is a Pareto point of (MOP), we can apply
(2) to get that

x 2 \
Q

i¼1
Li
¼ðx�Þ:

Therefore UiðxÞ ¼ Uiðx�Þ for all i ¼ 1; . . . ;Q and all x 2 F feasible for ðPqÞ.
Consequently,

P
q2QUqðxÞ is constant over the (identical) feasible set of

each ðPqÞ, which is also the feasible set of (CC(MOP,x�)). Thus (26) fol-
lows and the lemma is proved. (
We now relate a Pareto point of (MOP) to a saddle point of the aug-

mented Lagrangian.

THEOREM 5. Let (CC(MOP,x�)) satisfy QGC and be SoD2. Then x� 2 F is
a Pareto point for (MOP) if and only if there exist ðy�; r�Þ, r� > 0 such that
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Laðx�; y; rÞOLaðx�; y�; r�ÞOLaðx; y�; r�Þ ð27Þ
holds for all x 2 F and y 2 RQ, r > 0.

Proof. According to the Charnes and Cooper result, x� 2 F is a Pareto
solution of (MOP) if and only if it is an optimal solution of
(CC(MOP,x�)). Applying to this problem the results by Rockafellar [13,
Corollary 5.2], we obtain the desired result. (

Using [1, Theorem 2.2], we can similarly show that if x� is an isolated
local solution of (CC(MOP,x�)) satisfying the standard second order suffi-
ciency conditions for optimality with strict complementarity, then there
exists a neighborhood N of x� such that

min
x2N

Laðx; y�; r�Þ ¼ Laðx�; y�; r�Þ ¼ max
y2RQ

Laðx�; y; r�Þ;

where y� is the Lagrange multiplier vector and r� is sufficiently large.
In the remaining part of this section we turn our attention to the feasible

point partition and reformulate (CC(MOP(Q<F ðx�ÞÞ; x̂)) in order to proceed
with other results.
Because x̂ 2 SO

F ðx�Þ we have

Uqðx̂ÞOUqðx�Þ 8q 2 Q: ð28Þ
From the definition of (CC(MOP(Q<F ðx�ÞÞ; x̂)) we get

UqðxÞ � Uqðx̂ÞO 0
UqðxÞ � Uqðx�ÞO 0

�
8q 2 Q<F ðx�Þ ð29Þ

and

UqðxÞ � Uqðx�ÞO0 8q 2 Q¼F ðx�Þ: ð30Þ
With (28), inequalities (29) and (30) can be written as

UqðxÞ � Uqðx̂ÞO0 8q 2 Q<F ðx�Þ
UqðxÞ � Uqðx�ÞO0 8q 2 Q¼F ðx�Þ:

Now (CC(MOP(Q<F ðx�ÞÞ; x̂)) becomes

min
X

q2Q<F ðx�Þ
UqðxÞ

subject to UqðxÞ � Uqðx̂ÞO0 8q 2 Q<F ðx�Þ;
UqðxÞ � Uqðx�ÞO0 8q 2 Q¼F ðx�Þ;
x 2 F:

ð31Þ

Let psðuÞ be the perturbation function associated with problem (31):
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psðuÞ ¼ min
x2F

X

q2Q<F ðx�Þ
UqðxÞ :

8
<

:

UqðxÞ � Uqðx̂Þ 8q 2 Q<F ðx�Þ
UqðxÞ � Uqðx�Þ 8q 2 Q¼F ðx�Þ

" #
Ou; u 2 RQ

)
:

ð32Þ

We show that problem (31) is SoD2 if the same is true for the original
problem (CC(MOP,x̂)).

LEMMA 3. Consider x� 2 F that is not a Pareto point for (MOP). Then for
all x̂ 2 SO

F ðx�Þ such that (CC(MOP,x̂)) is SoD2, (CC(MOP(Q<F ðx�ÞÞ; x̂)) is
also SoD2.

Proof. Let pðuÞ and psðuÞ be the perturbation functions associated with sca-
larizations (CC(MOP,x̂)) and (CC(MOP(Q<F ðx�ÞÞ; x̂)), respectively. We
define an appropriate function psðuÞ of class C2 and first show that
psðuÞPpsðuÞ.
In the second part we show that also psð0Þ ¼ psð0Þ.
Let

psðuÞ :¼ pðuÞ �
X

q2Q¼
F
ðx�Þ
ðUqðx̂Þ þ uqÞ ð33Þ

where pðuÞ is defined as in Assumption 2 for (CC(MOP,x̂)) and

pðuÞPpðuÞ 8u 2 N: ð34Þ
From (33) and (34) we get

pðuÞ �
X

q2Q¼F ðx�Þ
ðUqðx̂Þ þ uqÞPpsðuÞ: ð35Þ

Now we shall show that

pðuÞ �
X

q2Q¼F ðx�Þ
ðUqðx̂Þ þ uqÞOpsðuÞ: ð36Þ

By definition,

pðuÞ¼min
x2F

X

q2Q
UqðxÞ : UqðxÞ�Uqðx̂ÞOuq 8q2Q

( )

¼min
x2F

X

q2Q<F ðx�Þ
UqðxÞþ

X

q2Q¼F ðx�Þ
UqðxÞ :

UqðxÞ�Uqðx̂Þ 8q2Q<F ðx�Þ
UqðxÞ�Uqðx̂Þ 8q2Q¼F ðx�Þ

� �
Ou

8
<

:

9
=

;;

since Q ¼ Q<F ðx�Þ [ Q¼F ðx�Þ (see (3) and (4)).
Observe that

Uqðx̂Þ ¼ Uqðx�Þ for all q 2 Q¼F ðx�Þ:
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Therefore

pðuÞ¼min
x2F

X

q2Q<F ðx�Þ
UqðxÞþ

X

q2Q¼F ðx�Þ
UqðxÞ: UqðxÞ�Uqðx̂Þ 8q2Q<F ðx�Þ

UqðxÞ�Uqðx�Þ 8q2Q¼F ðx�Þ

� �
Ou

8
<

:

9
=

;

Omin
x2F

X

q2Q<F ðx�Þ
UqðxÞþ

X

q2Q¼F ðx�Þ
ðUqðx̂ÞþuqÞ:

UqðxÞ�Uqðx̂Þ 8q2Q<F ðx�Þ
UqðxÞ�Uqðx�Þ 8q2Q¼F ðx�Þ

� �
Ou

8
<

:

9
=

;

¼min
x2F

X

q2Q<F ðx�Þ
UqðxÞ : UqðxÞ�Uqðx̂Þ 8q2Q<F ðx�Þ

UqðxÞ�Uqðx�Þ 8q2Q¼F ðx�Þ

� �
Ou

8
<

:

9
=

;

þ
X

q2Q¼F ðx�Þ
ðUqðx̂ÞþuqÞ

¼psðuÞþ
X

q2Q¼F ðx�Þ
ðUqðx̂ÞþuqÞ; (37)

where psðuÞ is the perturbation function defined in (32). The inequality
above results from the condition UqðxÞ � Uqðx�ÞOuq 8q 2 Q¼F ðx�Þ, after
which the expression under the second sum becomes constant and the min-
imization is carried out with respect to the first sum. Clearly, (37) proves
(36).
Now we shall show that psð0Þ ¼ psð0Þ.

pð0Þ¼min
x2F

X

q2Q<F ðx�Þ
UqðxÞþ

X

q2Q¼F ðx�Þ
UqðxÞ :

UqðxÞ�Uqðx̂Þ 8q2Q<F ðx�Þ
UqðxÞ�Uqðx̂Þ 8q2Q¼F ðx�Þ

� �
O0

8
<

:

9
=

;

¼ min
x2SO

F
ðx�Þ

X

q2Q<F ðx�Þ
UqðxÞ :UqðxÞ�Uqðx̂ÞO0 8q2Q<

F ðx�Þ

8
<

:

9
=

;

þ
X

q2Q¼F ðx�Þ
Uqðx̂Þ

¼min
x2F

X

q2Q<F ðx�Þ
UqðxÞ :

UqðxÞ�Uqðx̂Þ 8q2Q<F ðx�Þ
UqðxÞ�Uqðx�Þ 8q2Q¼F ðx�Þ

� �
O0

8
<

:

9
=

;

þ
X

q2Q¼F ðx�Þ
Uqðx̂Þ

¼psð0Þþ
X

q2Q¼F ðx�Þ
Uqðx̂Þ:

The second equality follows from the definition of SO
F ðx�Þ (see (1)) and

UqðxÞ ¼ Uqðx�Þ for all x 2 SO
F ðx�Þ and all q 2 Q¼F ðx�Þ. Now we apply the

definition of SO
F ðx�Þ again and get the third equality.

Since pð0Þ ¼ pð0Þ ¼ psð0Þ þ
P

q2Q¼F ðx�ÞU
qðx̂Þ we obtain the desired

result. (
We are now in the position to present another result on the existence of

Pareto-related saddle points. We emphasize that the arguments of Lemma
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1 and Lemma 3 show that no stronger assumptions are required for
(MOP) than those introduced by Rockafellar [13] for single objective pro-
grams.

THEOREM 6. Let x� 2 F be a point which is not a Pareto solution for
(MOP). Let x̂ 2 SO

F ðx�Þ and let (CC(MOP,x̂)) satisfy the QGC and be
SoD2. If ðx̂; ŷ; r̂Þ is a saddle point of the augmented Lagrangian function
associated with scalarization (CC(MOP(Q<

F ðx�ÞÞ; x̂)), then there exist
ðy�; r�Þ; r� > 0, such that (x̂; y�; r�) is a saddle point of the augmented
Lagrangian function associated with (CC(MOP,x̂)), and x̂ is Pareto for
(MOP).

Proof. Since problem (CC(MOP,x̂)) satisfies the quadratic growth condition
so does (CC(MOP(Q<F ðx�Þ; x̂))). Furthermore, from Lemma 3, we have that
problem (CC(MOP(Q<F ðx�Þ; x̂))) is SoD2. From Theorem 5, x̂ is a Pareto
point for (MOP(QO

F ðx�Þ), and from Theorem 1, x̂ is also Pareto for
(MOP). Therefore, due to Theorem 5 again, the result follows. (

EXAMPLE 3. We illustrate Theorem 6 with an example. Consider the fol-
lowing nonconvex (MOP):

min fU1;U2;U3g
subject to f 1ðxÞ ¼ �ðx1 � 1Þ2 þ x2 � 2 O0

f 2ðxÞ ¼ x1 � x22 � 1 O0

f 3ðxÞ ¼ x1 O2

f 4ðxÞ ¼ �x1 O0

f 5ðxÞ ¼ x2 O3

f 6ðxÞ ¼ �x2 O0

ð38Þ

where the objective functions U1,U2,U3 are defined as follows:

U1ðxÞ¼
�x1 if x1O1:5

�1:5 otherwise;

�

U2ðxÞ¼ ðx1�1Þ2�x2þ2 if 4ðx1�1:5Þ2þ4ðx2�2:55Þ2> 1;

0 otherwise;

(

U3ðxÞ¼ �ðx1�1Þ2�ðx2�5Þ2þ100 if 4ðx1�1:5Þ2þ4ðx2�2:55Þ2> 1

0 otherwise:

(

Choose x� ¼ ð0; 3Þ. Then we evaluate ½U1ðx�Þ;U2ðx�Þ;U3ðx�Þ� ¼ ½0; 0; 95�.
We have

SO
F ðx�Þ ¼fx2R2:0Ox1O2; ðx1� 1Þ2�x2þ 2¼ 0g [

fx2R2:4ðx1� 1:5Þ2þ 4ðx2� 2:25Þ2O1;�ðx1� 1Þ2þx2� 2O0g:
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We also obtain Q¼F ðx�Þ ¼ f2g and Q<F ðx�Þ ¼ f1; 3g and the smaller prob-
lem (MOP(Q<F ðx�Þ)) below:

min fU1;U3g
subject to x 2 SO

F ðx�Þ
: ð39Þ

Choosing x̂� ð1:5; 2:25Þ we can construct (CC(MOP(Q<
F̂
ðx�Þ; x̂))) and

verify the theorem. Observe that all feasible points of this single objective
problem have the same objective value.
For another example of the application of the augmented Lagrangian to

nonconvex MOPs the reader is referred to [23].

5. Conclusion

In this paper, Pareto solutions of MOPs are related to saddle points of
some Lagrangian-type scalarizing functions. The common foundation for
all results is determined by Charnes and Cooper’s scalarization of MOPs
as well as by the partitions of the set of objective functions and the set of
constraints used in this paper. Saddle point characterizations of Pareto
points for convex and nonconvex MOPs are derived. For convex MOPs,
an interpretation of the saddle point condition in decision making is
included. For nonconvex MOPs, it is shown that finding Pareto solutions
is equivalent to finding saddle points of the augmented Lagrangian func-
tion La, which, to the authors’ knowledge, had not been known before.
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